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PHASE EQUILIBRIA AND METASTABLE STATES 

V. P. Skripov UDC 536.42 

Agreement is remarked between the theory of homogeneous seed-formation and 
tests on the kinetics of the boiling and crystallization of fluids. The con- 
tinuation of the two-phase equilibrium line into the domain where both phases 
are metastable is discussed. The application of thermodynamic similarity to 
describe the melting of substances is shown. 

i. The phase equilibrium condition in a one-component system 

~(T, P)=~(T, P) (1) 

refers to a plane interface 

= : u - - T s  + Pv. (2) 
A part of the surface of the chemical potential p which proceeds higher than the ~ of the 
competing phase behind the line of intersection (i) corresponds to phase metastable states. 
Small amplitude perturbations in the metastable phase (density fluctuations, say) are re- 
sorbed if the spinodal is not reached, for which we have 
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Fig. i. Superheating of liquid xenon, T, ~ P, MPa. 

Fig. 2. Melting line AA' according to (6) and line of equilib- 
rium superconductor-normal metal transition B according to 
(13), schematically. 

(aP/av)~ = 0 (3) 

However, local perturbations of a special kind and high amplitude result in instability. A 
spherical seed of radius r of the competing phase (6) is a form of these perturbations;. The 
condition for its equilibrium with the medium has the form 

2~ 
~(T, P~)--~(T, P~), P~=P~-+- r,.. (4) 

Taken into account in (4) is the additional pressure within a spherical volume of the phase 
due to the surface tension o on the interface with the phase ~. For r > r, further growth 

of the phase $ is specified thermodynamically. 

In many cases the system contains numerous impurities and defects on which vital ~,eeds 
of the new phase are formed for small supersaturation (heterogeneous nucleation). Great 
difficulties occur for poorly defined heterogeneous centers in physical theory and they 
result in unsatisfactory reproducibility in experiment. This raised doubts [i] in the pos- 
sibility of observing the natural boundary of metastable states in a pure system. Suc~ a 
boundary is associated with the kinetics of homogeneous nucleation when the seeds occur be- 
cause of thermal fluctuations [i-3]. But at this time it has been clarified that the pres- 
ence of a heterogeneous nucleation background does not, firstly, exist everywhere and, sec- 
ondly, does not certainly hinder the isolation of a clear homogeneous nucleation sign~l [4, 
5]. 

Good agreement has been established between theoretically expected heating and results 
of tests under quasistatic conditions as well as under impulsive thermal effects [4, %, 7] 
for a large number of simple and molecular fluids. The stationary frequency of seed forma- 
tion J = J(T, P) depends quite radically on fluid heating. The Gibbs number G = W,/kbT is 
the quantity governing this dependence where 

W, = 16aoav~/3 (5~) ~. (5) 

The phase chemical potentials for the compilation of 5~ are taken at the identical pressure 
(P~). The expression (5) is valid not only for an overheated fluid but also for other kinds 
of metastability. We have approximately d In J/dT = -dG/dT, d in J/dP = -dG/dP = 2~r~/3kbT. The 
domain of overheated states is shown in Fig. 1 for liquid xenon in a broad range of pressures. 
It is located between the saturation line 1 and the spinodal 3. Test results on xenon heat- 
ing by the method of continuous isobaric heating 4 and the method of a pressure drop t~ a 
given magnitude 5 are noted by points. In the former case J = 1011 sec-Z-m -3 and in the 
latter J = 107 sec-Z.m -s. Although the effective seed-formation frequencies differ in the 
fourth order, the scale of the graph does not permit a clear display of the difference be- 
tween the two series of tests. The theoretical curve 2 (J = 1011 sec-Z-m -3) passes thcough 
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TABLE i. Quantities Characterizing Seed-Formation in Super- 
cooled Liquid Metals J(T,) = I0 II sec-l.m -~ 

Substance 

Gallium 
Tin 
Germanium 
Copper 
Water 

To, I~ 

257 
505 

1211 
1356 
273 

T,, K 

158 
383 
915 

1079 
237 

o,mJ/m 2 

40,4 
59,0 

241 
200 

28,7 

170 
270 
160 
480 
300 

d l g J  , K _  a 

d T  

0,39 
0,39 
0,15 
0,19 
1,3 

the array of points. For P = 0.5 MPa and J = 107 sec-l'm -~ an estimate by the preceding 
formulas yields d in J/dT = 12, i.e., a I~ increase in temperature results in a five order 
increase in the stationary nucleation frequency. Consequently, the domain of spontaneous 
(homogeneous) effervescence has a sharp lower bound. 

As tests with supercooled fluids show, application of the theory to the description of 
the kinetics of fluctuations seed formation during crystallization is possible [5]. For 
instance, for water and for tin the seed-formation frequency range studied includes 12-16 
orders of variation of J. Presented in Table 1 are data for several metals; n, is the num- 
ber of atoms in the seed crystallite of critical size for supercooling AT = T o - T,, J(T,) = 
1011 sec-l.m-3 

2. It is known from test that the saturated vapor pressure above a supercooled liquid 
Ps is greater than the vapor pressure above a crystal Ps at the same temperature. The dif- 
ference in the chemical potentials of a supercooled liquid and crystal Au(T) = ~s -Us can 
be found in terms of the ratio between the pressures mentioned 

h~ = RTln(PdP~).  

The quantity AU > 0 characterizes the thermodynamic stimulus of the liquid-crystal phase 
transition, it enters into (5) for the work of critical seed formation. Presented here for 
water are values of Ps (in parentheses) according to [8] for different supercoolings AT = 
Ttr - T, K at the triple point (Ttr = 273.16~ Ptr = 609 N/m2): 0 (i.000); i0 (1.102); 20 
(1.215) 30 (1.340); 40 (1.474). 

The following was important to us: although both coexisting phases, liquid and vapor, 
are metastable with respect to a crystal for T < Ttr, they can be in equilibrium with each 
other. This property is characteristic for phase transitions of the first kind. Not only 
metastable states of the separate phases are possible, but also metastable continuations of 
the phase equilibriums behind the triple point. Such a continuation into the negative pres- 
sure domain exists for the melting line, where the crystal and liquid are in a state of 
multilateral tension. Briggs obtained negative pressures of tens of MPa by the method of cen- 
trifuging; references are presented in [4]. 

Construction of the phase diagram with metastable continuation of the phase equilibrium 
line is useful when studying transformations into the solid phase (graphite -diamond, alloys 
on an iron base, aluminum and others). It is detected in tests with gallium droplets of i0- 
i00 um [5] and 10-30 nm [9] diameters that crystallization under high supercoolings occurs 
in the metastable G-phase. Its melting point at atmospheric pressure is 257~ which is 
47~ below the melting point of phase I. It is seen from the phase diagram of gallium [i0] 
that the metastable section of the equilibrium line of crystalline G-phase-melt is 1.2 GPa 
in pressure. 

Let us turn to the melting of simple substances. A good approximation for the melting 
line is the Simon equation [ii] 

P0 = -~0 " (6) 

Here T O is the melting point at zero pressure, P = -P0 is the pressure at which the conti- 
nuation of the melting line arrives as T + 0~ For substances melting as the volume in- 
creases (Av = vs - v s> 0), P0 > O; for substances of the type of water P0 < 0. If the origin of 
the pressure reference is moved to the point {T = 0, P = - P0}, then we can writeP = T c 
where P = (P + P0)/P0, T = T/T0 instead of (6). Test shows that c > i and takes on different 
values for different substances. Substances with identical exponent c form a group of simi- 
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TABLE 2. Characteristic Quantities for Equilibrium Melting 

of Simple Substances 

Substance T~, K Po, MPa c Av, A~ AV/Vs ~s~ 
cm3/g-mole 

Neon 
Argon 
Xenon 
Nitrogen 
Carbon tetra- 
chloride 

Sodium 
Potassium 
Rubidium 
Aluminum 
Cadmium 
Lead 
Copper 

24,6 
83,8 

163,1 
63,2 

250,6 
370,8 
335,7 
31!,9 
933 
594 
600 

1358 

!04 
2!! 
26l 
161 

292 
1!97 
427 
395 

7000 
4500 
3230 

13400 

I , 60 
,59 
,59 
,78 

2,i2 
3,53 
4,44 
3,74 
2,20 
2,40 
2,41 
2,44 

2,03 
3,50 
5,59 
2,50 

3,92 
0,64 
1,17 
1,45 
0,72 
0,44 
0,70 
0,35 

t ,03 
1,06 
1,09 
0,77 

0,55 
0,25 
0.18 
0122 
0,65 
0,40 
0,45 
0,42 

0,158 
O, 142 
0,I51 
0,084 

0,053 
0,026 
O, 025 
O, 027 
O, 064 
0,033 
O, 037 
0,046 

0,62 
0,63 
0,64 
0,60 

0,62 
0,63 
O, 62 
0,61 
0,78 
0,56 
0,63 
0,60 

lar substances with respect to melting, and c can be called the thermodynamic similality 
parameter. It is determined by the dimensionless slope of the melting line, c = [TI/(P I + 
P0)][dP/dT]TI. According to (6), the expression on the right side is independent of the 
location of the point {T l, Pl} on the curve. But if a similarity parameter is introduced 
without making the form of the equation specific 

[ (T/To, P/Po, c) :- O, ( 7 )  

then a compatible point should be selected for different substances. It is simplest to 
take it for P ~ 0 

T o / dP 
C = - -  

Po  -gF-)To <8) 
To find (dP/dT)T0 it is sufficient to know the piece of the melting line abutting on ~t- 
mospheric pressure, but additional information is required to estimate P0. A direct ?ath 
presumes extrapolation of the experimental data P = p(T), referring to a large section of the 
melting line, to the low temperature domain. 

By relying on (i) and (2), it is not difficult to express P0 in terms of the rati~ of 
asymptotic values of the jumps in the internal energy and volume during melting: P0 = (Au/ 
AV)T= 0. The quantity P0 is close to the internal pressure in the condensed phase as P + 0 
[12]. Thermodynamically this means that as the temperature diminishes lowering of the in- 
ternal stability of the liquid (and crystal) occurs on the melting line. The melting line 
approaches the spinodal [13. 14]. The spinodal of a liquid emerges from the critical point 
of liquid-vapor equilibrium. For a Van der Waals fluid we have Psp(T = 0) = -27P c. For a 
large number of substances for which the quantities P0 differ by one or two orders of magni- 
tude, a correlation is actually detected between P0 and 27P c. This correlation can be util- 
ized for a preliminary estimate of P0 according to the critical pressure of the substance. 

We obtain another useful correlation if we introduce a dimensionless volume v = v/v+ by 
using the scale factor v+ = RT/(P + P0). The dimensionless jump in the volume during melt- 
ing Av = Av(P + P0)/RT correlates with the logarithm of the ratio between Av and the volume 
of the crystalline phase v s [15, 16]. For mono- and diatomic substances we have at tlle point 
P=0 

Aft : 0,4801n (Av/v~) ~ 1,955. (9) 
This correlation can be used to find the PG of substances studied slightly by means of 
values of Av, v s at one point of the melting line. 

The empirical equation (6) should be compared with the Clapeyron-Clausius equation 

dP/dT = As/Av. ( 1 0 )  

If the reduced jump in the entropy As = ~s/R is introduced in addition to the volume jump 
Av then according to (i0) the parameter c equals the ratio between the jumps As and A~': 

c = As/6v. ( 11 ) 

In the Simon approximation the ratio mentioned does not change during motion along the mel- 
ting line. This assures integrability of (i0). Returning to the determination of &v we note 
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that the proportionality between Av and A~ is obtained when using a shifted pressure scale 
P' = P + P0. This indicates the fundamentality of the introduction of the asymptotic value 
P0 = -P(T § 0) in the description of the melting line. 

The relationship (ii) taken at the point P = 0 corresponds to the definition (8) which 
is not related to the form of (7). If the model of an "ideal" condensed system with a phase 
transition of the melting type is introduced under the condition Au = 0 (an analog is a system 
of solid spheres) [17], and As = ASid + Asl is represented, where ASid = Av, then we obtain 
c = i + Asl/Av for (ii). It is very important that simple substances have an approximately 
identical "nonideal" part of the entropy jump As I -~ 0.62. Therefore, a simple approximate 
relationship 

c = I q- 0,62/Av, ( 1 2 )  

exists that permits finding the similarity parameter c by means of the value of Av at P = 0 
(and at atmospheric pressure in practice). The quantities used above in the discussion of 
melting are presented in Table 2 for a number of substances. For polyatomic molecules the 
characteristic value of the "nonideal" part of the entropy jump is higher than for mono- 
atomic (and analogous) molecules by approximately two units [15, 16], As I ~- 2.60. 

3. Other equations besides (6) exist for melting [18, 19], but the power-law temper- 
ature dependence of the pressure can be taken as the fundamental approximation. In contrast 
to this for the liquid-vapor equilibrium line, resulting in the dependence P = f(T) is the ex- 
ponential factor in P = A - (B/T) + .... 

An equation of the type (6) has a broader range of application than was discussed above. 
It can be used to describe other phase transitions of the first kind also. The binodal in 
two-component stratified fluid systems is shifted as the external pressure changes. For a 
fixed concentration m the derivative dP/dT is determined by the generalized Clapeyron-Clau- 
sius equation [20]. For many solutions with an upper critical temperature, the dependence 
P = f(T, ~) is approximated well for m = const by (6). For instance, processing the data 
[21] for the methanol-cyclohexane system yields the following values of the parameters: T o = 
312.5~ P0 = 109 MPa, c = 8.32. M. Z. Faizullin conducted a study of the dependence P = 
f(T, ~) for a number of'alcane~ perfluoroalcane solutions at the suggestion of the author and 
detected the applicability of the Simon equation. The authors of [22] arrived at the same 
deduction for methanol-heptaneand methanol-octane solutions. 

The phase transition of a metal into the superconducting state [23] is another example 
of a power-law dependence of the form (6) when the magnetic field intensity H is the thermo- 
dynamic force instead of the pressure. For superconductors of the first kind the relation- 
ship between the intensity H destroying superconductivity and the temperature is expressed 
approximately by the Goerter equation 

1 I-I ' T )  c 

It is completely analogous to the Simon equation if it is taken into account that P and H 
are in the expression for the work of the system with opposite signs; T o is the critical 
phase equilibrium temperature, and H 0 is the threshold field for T = 0 and c = 2. 

Letting X denote the intensive thermodynamic parameter (thermodynamic force) X = -P, H 
Eqs. (6) and (13) can be represented thus: 

1 -  x - 7  = " (14) 

Shown schematically in Fig. 2 are the melting line A with the continuation A' into the domain 
of metastable phase states and the line B of the equilibrium superconductor-normal conductor 
transition. The essential distinction between cases B and A is that there is a phase equi- 
librium transformation point (T = T 0, H = 0) of the critical liquid-vapor equilibrium point 
type for the superconductor. An analogous point is not detected for the melting line up to 
pressures exceeding P0 by an order. Another distinction is the superposition of the domain 
of metastable states (A') on the domain of stable phase coexistence (B) in the generalized 
phase diagram T/T 0, X. 

The superconductor-normal conductor phase transition is more unified for different metals 
as compared with the melting. This is related to the fact that the jump in magnetization per 
unit volume AM which is the analog of the jump in volume for melting is defined in a universal 
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manner AM = i/4~ H. If the exponent c in (13) is determined on different sections, shifting 
towards the low temperatures, then it is detected that c + 2 as T § 0. If c is found from 
the minimum of the deviation of H from experimental values on the whole phase equili[rium 
line H = H(T, c), then values of the exponent between 1.6 and 2.1 are found for different 
metals. This range of c is considerably narrower than for the melting of simple substances 
(see Table 2) and the quantity c itself characterizes a group of thermodynamically similar 
metals with respect to the transition into the superconducting state. The parameter c can 
be determined by the relationship c = --[T/(H 0 - H)](dH/dT) for a given reduced temperature 
T/T0, for T/T 0 = 0.8, say, without connecting this definition to a specific form of the equa- 
tion f(H/H0, T/T0, c) = 0. In order to obtain (13) from the Clapeyron-Clausius equation 
dH/dT = As/AM a proportionality must be assumed between the reduced entropy jumps As = As/R 
and the magnetization AM = AM(H 0 -H)/RT: As = cAM. The entropy jump As = (c/4~)(T/T0) c-I" 
(HH0/T 0) has a maximum in the band (0, To), vanishes for T = 0, H = H 0 and for T = T O , H = 0. 
That the derivative dX/dT vanishes as T § 0 is contained in the generalized Simon equation 
(14) if c > i. Since (14) should be in agreement with the Clapeyron-Clausius equation, then 
the asymptotic As § 0, T § 0 hence already follows. The asymptotic mentioned is in sgreement 
with the Nernst theorem and is an important corollary of (14). 

Therefore, the power-law function (14) turns out to be a suitable approximation for the 
temperature dependence of the thermodynamic force X for certain phase transitions of the first 
kind in condensed systems of different nature. The presence of the quantity X0(P0, H 0) that 
characterizes the internal field in the specimen as T + 0 is essential in (14)o The low- 
temperature part of the phase equilibrium line (T < T o ) can refer to the metastable states of 
co-existing phases, as takes place in the melting case. 

NOTATION 

p, pressure, Pa; v, molar volume; T, temperature, ~ s, entropy, J/kg'mole; o, surface 
tension, J/m2; ~, chemical potential; u, internal energy, J/kg-mole; W,, work of critical 
seed formatio~ J; n,, number of molecules therein; r,, critical seed radius, m; kb, Boltz- 
mann constant; R, universal gas constant; G = W,/kbT, Gibbs number; J, frequency of seed- 
formation, sec-l'm-S; Pc, pressure at the critical point; Psp, pressure at the spinod~l; 
Av, As, reduced (dimensionless) jumps in the volume and entropy during melting; T o , equili- 
brium melting temperature at p = 0; c, thermodynamic similarity parameter; -P0, asymptotic 
pressure (T + 0) on the phase transition line; m, molar fraction of the component in solu- 
tion; H, magnetic field intensity, A/m; M, magnetization; and ~, ~, Z, s, subscripts to de- 
note the phases. 
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MASS TRANSPORT IN A NONUNIFORM ISOTHERMAL MIXTURE OF REAL GASES 

A. S. Raspopin, P. E. Suetin, 
P. I. Bogdanov, and P. G. Zykov 

UDC 533.15 

A method of describing mass transport in a nonuniform isothermal mixture of real 
gases is given. The computed results are compared with experimental data. 

It has been reliably established that for isothermal diffusion in gas mixtures in the 
absence of external forces, there is a loss of mechanical equilibrium [i, 2]. Therefore, 
even in a nonuniform mixture of ideal gases, the process of mass transport is composed of 
two physically distinct components. The first is due to the random migration of molecules 
in a mixture that is nonuniform in composition (self diffusion [2]), while the second com- 
ponent is due to pressure nonuniformities, which are practically unavoidable, and which 
lead to the transport of all of the components of the mixture in a given volume element as 
a whole (convective transport). The existence of two physically distinct transport mecha- 
nisms whose contributions to the total mass transport process can be of the same order of 
magnitude [2] means that both components must be taken into account in a theory of mass 
transport. 

The usual method of taking into account the convective component of mass transport is 
to impose certain conditions on the fluxes, which are characteristic of the device in which 
the diffusion is observed. An example of a restriction of this kind is the assumption that 
the mean velocity is equal to zero in the diffusion of ideal gases in a two-bulb device [3]. 
When restrictions are introduced, mass transport can be described sufficiently accurately 
in the particular device under consideration. For example, in the two-bulb device the above 
restriction allows one to describe the quasistationary stage of the mass transport and to 
obtain a unique characteristic of the process - the coefficient of mutual diffusion [3]. 

However, there are at least two reasons why an approach of this kind cannot be consi- 
dered completely satisfactory. The first is that if we want to describe diffusion in a de- 
vice with a different geometric shape or with different conditions on the boundary of the 
device, the applicability of the restrictions must be re-examined because the characteris- 
tics of the process (such as the coefficient of mutual diffusion) are partly determined by 
these restrictions [2] and the same characteristics cannot be used to describe diffusion in 
a different device unless exactly the same restrictions are introduced. Here it should also 
be noted that the nature of the restrictions can change significantly when we go from ideal 
gases to real gases. For example, in the diffusion of real gases in a two-bulb device, the 
average velocity will not be zero even in the quasistationary case since the number den- 
sities of different real gases are not equal at equal pressure. 

The second reason is that the introduction of restrictions reduces the description of a 
complicated mass transport process to a form natural for only one of the components. For 
example, the convective component is automatically included in the flux given by Fick's first 
law of diffusion. Such a reduction of two physically different processes into a single des- 
cription leads to doubts about its validity (especially for real gases) and to difficulties 
in the interpretation of the experimental data [4]. 
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